참/거짓으로 선택
판다스에서 조건으로 행을 선택하는 또 다른 방법을 알아보겠습니다.
import pandas as pd
df = pd.read_excel('census.xlsx')
참/거짓으로 선택
판다스에서 다음과 같이 비교를 하면 age
의 모든 값을 40과 비교하여 참(True
), 거짓(False
)의 시리즈를 만듭니다.
df['age'] > 40
0 False 1 True 2 False ... 32558 True 32559 False 32560 True Name: age, Length: 32561, dtype: bool
참/거짓의 시리즈를 []
사이에 넣어주면 해당 조건이 참인 행을 선택합니다.
df[df['age'] > 40]
age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
3 | 53 | Private | 234721 | 11th | 7 | Married-civ-spouse | Handlers-cleaners | Husband | Black | Male | 0 | 0 | 40 | United-States | <=50K |
6 | 49 | Private | 160187 | 9th | 5 | Married-spouse-absent | Other-service | Not-in-family | Black | Female | 0 | 0 | 16 | Jamaica | <=50K |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
32554 | 53 | Private | 321865 | Masters | 14 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 40 | United-States | >50K |
32558 | 58 | Private | 151910 | HS-grad | 9 | Widowed | Adm-clerical | Unmarried | White | Female | 0 | 0 | 40 | United-States | <=50K |
32560 | 52 | Self-emp-inc | 287927 | HS-grad | 9 | Married-civ-spouse | Exec-managerial | Wife | White | Female | 15024 | 0 | 40 | United-States | >50K |
13443 rows × 15 columns
이 방법은 대체로 코드가 복잡하고, 실행 속도도 느립니다. 가능하면 query
를 사용하세요.
and
두 조건 모두 참이어야 할 경우에는 &
연산자를 씁니다. 단, &
는 ==
과 같은 비교연산자보다 계산 우선 순위가 높기 때문에 비교를 먼저 하도록 괄호를 씌워줍니다.
아래는 age
가 40보다 크고, sex
가 Male
인 경우에만 참입니다.
(df['age'] > 40) & (df['sex'] == 'Male')
0 False 1 True 2 False ... 32558 False 32559 False 32560 False Length: 32561, dtype: bool
아래는 age
가 40보다 크고, sex
가 Male
인 행을 선택합니다.
df[(df['age'] > 40) & (df['sex'] == 'Male')]
age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
3 | 53 | Private | 234721 | 11th | 7 | Married-civ-spouse | Handlers-cleaners | Husband | Black | Male | 0 | 0 | 40 | United-States | <=50K |
7 | 52 | Self-emp-not-inc | 209642 | HS-grad | 9 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 45 | United-States | >50K |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
32550 | 43 | Self-emp-not-inc | 27242 | Some-college | 10 | Married-civ-spouse | Craft-repair | Husband | White | Male | 0 | 0 | 50 | United-States | <=50K |
32552 | 43 | Private | 84661 | Assoc-voc | 11 | Married-civ-spouse | Sales | Husband | White | Male | 0 | 0 | 45 | United-States | <=50K |
32554 | 53 | Private | 321865 | Masters | 14 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 40 | United-States | >50K |
9497 rows × 15 columns
or
두 조건 중에 하나만 참이어도 되는 경우에는 |
를 씁니다. |
는 키보드에서 백스페이스와 엔터 사이의 긴 막대기 형태의 기호입니다. |
역시 ==
과 같은 비교연산자보다 계산 우선 순위가 높기 때문에 비교를 먼저 하도록 괄호를 씌워줍니다.
아래는 relationship
이 Husband
이거나 Wife
인 경우에만 참입니다.
(df['relationship'] == 'Husband') | (df['relationship'] == 'Wife')
0 False 1 True 2 False ... 32558 False 32559 False 32560 True Name: relationship, Length: 32561, dtype: bool
아래는 relationship
이 Husband
이거나 Wife
인 경우에만 참인 행을 선택합니다.
df[(df['relationship'] == 'Husband') | (df['relationship'] == 'Wife')]
age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
3 | 53 | Private | 234721 | 11th | 7 | Married-civ-spouse | Handlers-cleaners | Husband | Black | Male | 0 | 0 | 40 | United-States | <=50K |
4 | 28 | Private | 338409 | Bachelors | 13 | Married-civ-spouse | Prof-specialty | Wife | Black | Female | 0 | 0 | 40 | Cuba | <=50K |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
32556 | 27 | Private | 257302 | Assoc-acdm | 12 | Married-civ-spouse | Tech-support | Wife | White | Female | 0 | 0 | 38 | United-States | <=50K |
32557 | 40 | Private | 154374 | HS-grad | 9 | Married-civ-spouse | Machine-op-inspct | Husband | White | Male | 0 | 0 | 40 | United-States | >50K |
32560 | 52 | Self-emp-inc | 287927 | HS-grad | 9 | Married-civ-spouse | Exec-managerial | Wife | White | Female | 15024 | 0 | 40 | United-States | >50K |
14761 rows × 15 columns
not
반대되는 경우를 찾으려면 ~
을 사용합니다. 아래는 age
가 30보다 작고 race
가 Black
이 경우가 아닌 행를 찾습니다.
df[~((df['age'] < 30) & (df['race'] == "Black"))]
age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 39 | State-gov | 77516 | Bachelors | 13 | Never-married | Adm-clerical | Not-in-family | White | Male | 2174 | 0 | 40 | United-States | <=50K |
1 | 50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
2 | 38 | Private | 215646 | HS-grad | 9 | Divorced | Handlers-cleaners | Not-in-family | White | Male | 0 | 0 | 40 | United-States | <=50K |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
32558 | 58 | Private | 151910 | HS-grad | 9 | Widowed | Adm-clerical | Unmarried | White | Female | 0 | 0 | 40 | United-States | <=50K |
32559 | 22 | Private | 201490 | HS-grad | 9 | Never-married | Adm-clerical | Own-child | White | Male | 0 | 0 | 20 | United-States | <=50K |
32560 | 52 | Self-emp-inc | 287927 | HS-grad | 9 | Married-civ-spouse | Exec-managerial | Wife | White | Female | 15024 | 0 | 40 | United-States | >50K |
31603 rows × 15 columns
포함 관계
포함관계를 확인할 때는 isin
메소드를 사용합니다.
아래는 relationship
이 Husband
이거나 Wife
에 포함될 때만 참입니다.
df['relationship'].isin(['Husband', 'Wife'])
0 False 1 True 2 False ... 32558 False 32559 False 32560 True Name: relationship, Length: 32561, dtype: bool
아래는 relationship
이 Husband
이거나 Wife
에 포함되는 행만 선택합니다.
df[df['relationship'].isin(['Husband', 'Wife'])]
age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | income | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
3 | 53 | Private | 234721 | 11th | 7 | Married-civ-spouse | Handlers-cleaners | Husband | Black | Male | 0 | 0 | 40 | United-States | <=50K |
4 | 28 | Private | 338409 | Bachelors | 13 | Married-civ-spouse | Prof-specialty | Wife | Black | Female | 0 | 0 | 40 | Cuba | <=50K |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
32556 | 27 | Private | 257302 | Assoc-acdm | 12 | Married-civ-spouse | Tech-support | Wife | White | Female | 0 | 0 | 38 | United-States | <=50K |
32557 | 40 | Private | 154374 | HS-grad | 9 | Married-civ-spouse | Machine-op-inspct | Husband | White | Male | 0 | 0 | 40 | United-States | >50K |
32560 | 52 | Self-emp-inc | 287927 | HS-grad | 9 | Married-civ-spouse | Exec-managerial | Wife | White | Female | 15024 | 0 | 40 | United-States | >50K |
14761 rows × 15 columns